
www.elsevier.com/locate/pharmbiochembeh
Pharmacology, Biochemistry and
Validation of the tremulous jaw movement model for assessment of

the motor effects of typical and atypical antipychotics: effects of

pimozide (Orap) in rats

Keita Ishiwari, Adrienne Betz, Suzanne Weber, Jennifer Felsted, John D. Salamone*

Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, United States

Received 10 August 2004; received in revised form 1 December 2004; accepted 3 December 2004

Available online 12 January 2005
Abstract

Drug-induced tremulous jaw movements (TJMs) in rats have been used as a model of parkinsonian tremor. Previous studies demonstrated

that the typical antipsychotic haloperidol induced TJMs after acute or subchronic administration, while atypical antipsychotics did not.

Moreover, it has been suggested that the relative potency for suppression of tacrine-induced TJMs relative to the suppression of lever pressing

can be used to discriminate between typical and atypical antipsychotics. In order to validate this model with additional drugs, the present

studies assessed the effects of the typical antipsychotic pimozide. In the first series of experiments, the effects of acute pimozide on tacrine-

induced TJMs and lever pressing were examined. As with haloperidol, pimozide failed to suppress tacrine-induced TJMs, even at doses

considerably higher than those that suppressed lever pressing. In the second group of experiments, rats were given single daily injections of

pimozide (0.125–1.0 mg/kg) or tartaric acid vehicle for 13 days, and were observed for TJMs on days 1, 7, and 13. Pimozide induced TJMs

in a dose-related manner on all days. The jaw movements occurred largely in the 3–7 Hz frequency range characteristic of parkinsonian

tremor. These data support the hypothesis that typical antipsychotics can induce TJMs in rats, and demonstrate that chronic administration of

typical antipsychotics is not necessary for induction of TJMs. TJMs induced by acute or subchronic pimozide may be related to early-onset

motor syndromes such as drug-induced parkinsonism.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Antipsychotic drugs are thought to exert their therapeutic

effects primarily by blocking dopamine (DA) D2 family

receptors in mesolimbic and mesocortical areas of the brain

(Creese et al., 1976; Dixon et al., 1995; Farde et al., 1988,

1989, 1992; Kapur and Remington, 2001; Kapur and

Seeman, 2001; Lidlow, 2000; Seeman, 1992, 2002; Seeman

et al., 1976). The therapeutic potencies of antipsychotic

drugs directly correlate with their affinities for the D2

receptor (Creese et al., 1976; Seeman and Lee, 1975;

Seeman et al., 1976). However, btypicalQ antipsychotic
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drugs such as phenothiazines (e.g., chlorpromazine) and

butyrophenones (e.g., haloperidol) also induce early-onset

motor side effects such as akinesia and tremor and, when

administered chronically, they induce tardive dyskinesia

(Casey, 2004; Gerlach and Casey, 1988; Tarsy, 1983). In

contrast, newer batypicalQ antipsychotics such as clozapine

and quetiapine are much less prone to induce these motor

side effects (Casey, 1989, 2004; Geddes et al., 2000;

Hippus, 1989; Leucht et al., 1999; Meltzer, 1989), despite

the fact that these compounds also block D2 receptors

(Kapur et al., 1999; Nordstrom et al., 1995, 1998). More-

over, not only is clozapine less likely to induce motor side

effects, but it has also been shown to ameliorate motor

dysfunctions in patients with idiopathic Parkinson’s disease

(Bernardi and Del Zompo, 1990; Factor and Friedman,

1997; Fisher et al., 1990; Friedman and Lannon, 1990;
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Pakkenberg and Pakkenberg, 1986). Various neurochemical

hypotheses have been proposed to explain these unique

motor properties of atypical antipsychotics (Kapur and

Remington, 2001; Kapur and Seeman, 2001; Meltzer, 1989;

Meltzer et al., 2003; Olney and Farber, 1994, 1995a,b; Roth

et al., 1995; Schotte et al., 1996; Seeman, 2002; Seeman et

al., 1997; Svensson et al., 1995; Van Tol et al., 1991;

Wadenberg et al., 2001; Wilson et al., 1998; Wong and Van

Tol, 2003).

While the exact neurochemical mechanisms underlying

the distinction between typical and atypical antipsychotics

are yet to be elucidated, various behavioral procedures

have been used to compare the effects of typical

antipsychotic drugs with those of atypical antipsychotics

(e.g., Gunne et al., 1986; Hoffman and Donovan, 1995;

Moore et al., 1992, 1997; Stanford and Fowler, 1997;

Wiley et al., 1994; Salamone et al., 1998; Wadenberg et

al., 2001). For example, considerable research has focused

upon tests involving induction of catalepsy and suppres-

sion of conditioned avoidance responding (see review by

Wadenberg et al., 2001). Another animal model employed

to investigate the motor effects of typical and atypical

antipsychotic drugs is drug-induced tremulous jaw move-

ments (TJMs; also known as vacuous jaw movements or

purposeless chewing) in rodents. TJMs are defined as

vertical deflections of the lower jaw that resemble

chewing, but are not directed at any particular stimulus

(Salamone et al., 1998). It has been shown that TJMs can

be induced by acute or subchronic administration of the

typical antipsychotic drug haloperidol (Correa et al., 2004;

Diana et al., 1992; Egan et al., 1996b; Rupniak et al.,

1983, 1985, 1986; Steinpreis and Salamone, 1993;

Steinpreis et al., 1993, 1996, 1997, 1998; Trevitt et al.,

1997, 1998; Wisniecki et al., 2003). TJMs can be

produced by other means of interfering with DA trans-

mission, such as acute administration of the monoamine

depleting agent reserpine (Baskin and Salamone, 1993;

Steinpreis and Salamone, 1993; Salamone and Baskin,

1996) and striatal DA depletions (Jicha and Salamone,

1991; Finn et al., 1997; Rodriguez Diaz et al., 2001).

TJMs are also induced by cholinomimetic drugs such as

muscarinic agonists (e.g., pilocarpine; Baskin et al., 1994;

Rupniak et al., 1983, 1985; Salamone et al., 1986, 1990;

Stewart et al., 1987, 1988) and anticholinesterases (e.g.,

physostigmine and tacrine; Collins et al., 1993; Kelley et

al., 1989; Carriero et al., 1997; Mayorga et al., 1997).

Considerable evidence indicates that drug-induced TJMs

show many of the characteristics of parkinsonian tremor

in humans (Cousins et al., 1997; Cousins and Salamone,

1998; Egan et al., 1996b; Finn et al., 1997; Jicha and

Salamone, 1991; Salamone and Baskin, 1996; Salamone

et al., 1990, 1998; Steinpreis et al., 1993). For example,

the interactions between acetylcholine and DA that have

been observed in TJMs (see Salamone et al., 1998 for

review) are similar to the pharmacological characteristics

of human parkinsonism (Duvoisin, 1967; Harbaugh et al.,
1984; Marsden et al., 1975; Noring et al., 1984; Tarsy,

1983; Weiss et al., 1980). It has also been shown that

tacrine-induced TJMs can be attenuated by antiparkinso-

nian drugs, including L-dopa, apomorphine, bromocrip-

tine, amantadine, benztropine, pergolide, and ropinirole

(Cousins et al., 1997; Salamone et al., 2005). Finally,

TJMs display a peak frequency in the 3–7 Hz range

(Cousins and Salamone, 1998; Finn et al., 1997; Mayorga

et al., 1997; Salamone and Baskin, 1996), which is

similar to the frequency range reported for parkinsonian

tremor (Adams and Victor, 1981).

Although the typical antipsychotic drug haloperidol

induces TJMs in rats (Correa et al., 2004; Diana et al.,

1992; Egan et al., 1996b; Rupniak et al., 1983, 1985,

1986; Steinpreis and Salamone, 1993; Steinpreis et al.,

1993, 1996, 1997, 1998; Trevitt et al., 1997, 1998;

Wisniecki et al., 2003), atypical antipsychotics such as

clozapine, olanzapine, and quetiapine not only fail to

induce TJMs when administered alone (Betz et al., in

press; Gunne et al., 1986; Johansson et al., 1986;

Steinpreis et al., 1997; Trevitt et al., 1997, 1999; Marchese

et al., 2002), but in fact they suppress cholinomimetic-

induced TJMs (Betz et al., in press; Chesler and Salamone,

1996; Trevitt et al., 1997, 1998, 1999). It has also been

shown that DA antagonists, including antipsychotic drugs,

suppress operant lever pressing on various schedules of

reinforcement (Beninger et al., 1987; Salamone, 1987,

1992; Salamone et al., 1991, 1996; Sanger and Perrault,

1995; Wiley et al., 1994). Accordingly, suppression of

lever pressing is considered to be a reliable dose-dependent

effect of virtually every antipsychotic agent. It has been

suggested that the ratio of the ED50 for suppression of

tacrine-induced jaw movements relative to the ED50 for

suppression of lever pressing on a fixed-ratio 5 (FR 5)

schedule could be used as an index of liability of an

antipsychotic drug to produce motor side effects (Betz et

al., in press; Salamone et al., 1998; Trevitt et al., 1997,

1998, 1999). For example, haloperidol, when administered

acutely, failed to suppress tacrine-induced jaw movements

in doses up to 1.0 mg/kg, while it produced dose-

dependent suppression of lever pressing with an ED50

value of 0.088 mg/kg, thereby yielding an ED50 ratio

value larger than 11.36 (Trevitt et al., 1997). In contrast,

the atypical antipsychotics clozapine, olanzapine, and

quetiapine reduced tacrine-induced TJMs at relatively

low doses compared to those required for suppression

of lever pressing, with all of them having ED50 ratios

less than 1 (Betz et al., in press; Trevitt et al., 1997,

1999).

In order to test further the validity of the TJM model

for assessing the motor effects of antipsychotic drugs, it is

necessary to assess the effects of additional typical

antipsychotics. Pimozide (Orap), a diphenylbutylpiperidine,

is a typical antipsychotic drug that has a high-affinity for

DA receptors with moderate D2 selectivity, and the drug

has been shown to be clinically effective in treating
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schizophrenia and some delusional disorders (Chouinard

and Annable, 1982; Feinberg et al., 1988; Sultana and

McMonagle, 2000; Tueth and Cheong, 1993; van Kammen

et al., 1987) as well as Tourette’s syndrome (Bruggeman et

al., 2001; Jimenez-Jimenez and Garcia-Ruiz, 2001; Shapiro

et al., 1987; Tueth and Cheong, 1993). Most importantly

for the present study, pimozide has been shown to produce

motor side effects, including tremor, in patients with

schizophrenia (Chouinard and Annable, 1982; Claveria et

al., 1975; Sultana and McMonagle, 2000), and to

exacerbate motor symptoms in patients with Parkinson’s

disease (Tarsy et al., 1975). In the present experiments, the

effects of pimozide on jaw movements and lever pressing

were examined in order to determine if pimozide would

show a profile of motor effects similar to that of

haloperidol. The first series of experiments (experiments

1 and 2) examined the effects of acute administration of

pimozide on tacrine-induced jaw movements and on

operant lever pressing on an FR 5 schedule to determine

the relative potency of the drug for these effects.

Previously, pimozide has been shown to fail to reduce

TJMs induced by the muscarinic agonist pilocarpine

(Stewart et al., 1988), while this drug has been shown to

suppress lever pressing on fixed-ratio schedules (Fowler et

al., 1986; Wiley et al., 1994). Thus, it was expected that

pimozide would fail to suppress tacrine-induced TJMs

even at doses much higher than those required for

suppression of lever pressing. In experiment 3, pimozide

was administered daily to rats for 13 consecutive days, and

animals were observed on days 1, 7, and 13 of drug

treatment in order to assess the ability of pimozide to

induce jaw movements. Previous work using similar

procedures demonstrated that haloperidol induced jaw

movements within the first 2 weeks of administration

(Steinpreis and Salamone, 1993; Trevitt et al., 1998). In

addition, freeze-frame analyses of videotapes of pimozide-

treated animals were used to determine the local frequency

of pimozide-induced TJMs (experiment 4). It was hypothe-

sized that pimozide would show a profile of behavioral

effects that would resemble that of haloperidol on these

tasks.
2. Materials and methods

2.1. Subjects

A total of 64 male Sprague Dawley rats (Harlan Sprague

Dawley, Indianapolis, IN) with no prior drug experience

were used in the present experiments. The animals were

315–450 g during the course of the experiment and had ad

libitum access to laboratory chow and water (except for the

food deprivation in the operant experiment). Animals were

group-housed in a colony that was maintained at approx-

imately 23 8C and had a 12-h light/dark cycle (lights on at

07:00 h). These studies were conducted according to
University of Connecticut and NIH guidelines for animal

care and use.

2.2. Drugs

Tacrine and pimozide were purchased from Sigma

Aldrich Chemical (St. Louis, MO). Pimozide was dissolved

in warm 0.3% tartaric acid, which also served as the vehicle

control. Tacrine was dissolved in 0.9% saline. The drug

dosages were selected based upon previous published

reports (Stewart et al., 1988; Trevitt et al., 1997, 1998)

and pilot work.

2.3. Experimental procedures: tremulous jaw movements

Observations of rats took place in a 30�30�30 cm

clear Plexiglas chamber with a wire mesh floor, which was

elevated 42 cm from the bottom of the table top. This

allowed for the viewing of the animal from several angles.

TJMs were defined as rapid vertical deflections of the

lower jaw that resembled chewing but were not directed at

any particular stimulus (Salamone et al., 1998). Each

individual deflection of the jaw was recorded using a

mechanical hand counter by a trained observer, who was

blind to the experimental condition of the animal being

observed. Separate studies with two observers demonstra-

ted an inter-rater reliability of r=0.92 ( pb0.05) using these

methods.

2.4. Experimental procedures: operant lever pressing

Animals were food-deprived to 85% of their free-feeding

body weight. Behavioral tests were performed in 28�23�23

cm experimental chambers (Med Associates, St. Albans,

VT) containing one lever that was located on the left side of

the front panel. Animals were initially trained to press on a

continuous reinforcement schedule for 45 mg food pellets

(Bioserve, Frenchtown, NJ) for 1 week, and then were

shifted to a fixed-ratio 5 (FR5) schedule (30-min sessions, 5

days a week, for at least 4 weeks). Drug testing began 1 week

after animals had reached acceptable baseline levels (1200 or

more lever presses per session for three consecutive

sessions).

2.5. Experiments

2.5.1. Experiment 1: effects of acute pimozide on

tacrine-induced TJMs

A group of 16 rats was used to assess the effects of

acute pimozide injections on tacrine-induced jaw move-

ments. Animals were tested once a week for 5 weeks. On

test days each animal received an injection of 5.0 mg/kg

tacrine 10 min before testing to induce TJMs, as well as a

dose of pimozide or vehicle 4 h before testing. The

following doses of pimozide were used: tartaric acid

vehicle, 0.0625 mg/kg, 0.125 mg/kg, 0.25 mg/kg, 0.50
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Fig. 1. The effects of acute pimozide on tacrine-induced tremulous jaw

movements. Mean (FS.E.M.) numbers of tremulous jaw movements (per 5

min) recorded after injections of 5.0 mg/kg tacrine plus tartaric acid

(vehicle) and tacrine plus different doses of pimozide are shown. Pimozide

had no significant effect on tacrine-induced tremulous jaw movements.
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mg/kg, and 1.0 mg/kg. Each rat received all doses in a

randomly varied order, with one injection per week. All

drugs were administered via intraperitoneal (IP) injection.

Rats were placed in the observation chamber immediately

after tacrine injection for a 10-min habituation, after

which they were observed for 5 min by a blind observer

(i.e., the observation period was 10–15 min after tacrine

injection).

2.5.2. Experiment 2: effect of acute pimozide on operant

lever pressing

A group of 9 rats was used to examine the effects of

acute pimozide administration on lever pressing on an FR5

schedule. Drug testing was performed on consecutive

Fridays between 15:00 and 19:00 h. The following doses

of pimozide were administered via IP injection 4 h before

testing: tartaric acid vehicle, 0.125 mg/kg, 0.25 mg/kg, 0.50

mg/kg, and 1.0 mg/kg. Each rat received all doses in a

randomly varied order, with one injection per week.

Baseline (i.e., non-drug) behavioral testing on the FR5

schedule was continued on Monday to Thursday of each

week.

2.5.3. Experiment 3: effect of repeated pimozide on the

induction of TJMs

Separate groups of rats were used to test each dose of

pimozide. Rats received daily IP injections for 14 days of

one of the following conditions (n=9–10 per dose): tartaric

acid vehicle, 0.25 mg/kg, 0.50 mg/kg, and 1.0 mg/kg

pimozide. Each animal received an injection of a particular

dose of pimozide or vehicle for 13 consecutive days, and the

animals were tested on days 1, 7, and 13 for the induction of

jaw movements. On test days, rats were given an IP

injection of pimozide or vehicle 4 h before testing and then

returned to their home cage. After 3 h and 50 min, the

animals were removed from the home cage and placed in a

Plexiglas observation chamber and allowed to habituate for

10 min. After the end of the habituation period, the animals

were observed by a blind observer for 5 min, during which

time each jaw movement was recorded with a mechanical

hand counter.

2.5.4. Experiment 4: videotape analysis of local frequency

of pimozide-induced TJMs

Two additional rats received repeated daily injections of

1.0 mg/kg pimozide, as described above, for 9 days. On

day 10, these rats were injected with pimozide, placed in

the observation chamber 4 h later, and were videotaped

over a 20-min period. The sections of these videotapes

that allowed for clear observation of the orofacial region

were then subjected to a freeze-frame analysis (1 frame=1/

30 s), in which the observer went frame-by-frame through

each burst of jaw movements (i.e., each group of at least

two jaw movements that were within 1.0 s of each other).

The observer recorded the inter-movement interval for

each jaw movement within these bursts, which was
defined as the number of frames between each point of

maximal jaw opening shown during successive jaw

movements.

2.6. Data analysis

The behavioral data for experiments 1 and 2 were

analyzed using a repeated-measures analysis of variance

(ANOVA), with dose as the repeated measure. Planned

comparisons using the overall error term were used to

assess the differences between each dose and the control

condition, which kept the total number of comparisons to

the number of conditions minus one (Keppel, 1982; pp.

106–124). The ED50 for each drug effect was estimated by

using curvilinear regression analysis (GraphPad Prism),

which employed an exponential decay function. This

method was used to provide confidence intervals as well

as ED50 estimates. Data from the tests on days 1, 7, and 13

were analyzed separately using a one-way ANOVA with

dose as the between-subjects factor. Planned comparisons

using the overall error term were used to assess the

differences between each dose and the control condition

for each day.
3. Results

3.1. Experiments 1 and 2: effects of acute pimozide on

tacrine-induced TJMs and lever pressing

As shown in Fig. 1, acute administration of pimozide

had no significant effect on tacrine-induced tremulous jaw

movements within the dose range used (0.0625–1.0 mg/kg)

F(5, 75)=1.123, n.s.. However, as seen in Fig. 2, acute

administration of pimozide led to dose-related decreases in
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Fig. 2. The effects of acute pimozide on lever pressing on an FR 5 schedule

are shown. Mean (FS.E.M.) number of lever presses (per 30 min) after

administration of vehicle and different doses of pimozide. Pimozide

significantly attenuated lever pressing in a dose-dependent manner

(*differed from vehicle: pb0.05).
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lever pressing, which were statistically significant F(4,

32)=41.198, pb0.001. Planned comparisons revealed that

the highest three doses (i.e., 0.25, 0.5, and 1.0 mg/kg) of

pimozide was significantly different from vehicle

( pb0.05). The ED50 for the suppression of lever pressing

by pimozide was estimated to be 0.2721 mg/kg, with 95%

confidence intervals of 0.3668–0.2163 mg/kg. Table 1

shows the ED50 values for the suppression of tacrine-

induced TJMs and lever pressing by pimozide in experi-

ments 1 and 2, as well as the ratio of these ED50 values

(i.e., ED50 for suppression of jaw movements divided by

ED50 for suppression of lever pressing). The ED50 values

and their ratios for haloperidol, clozapine, fluphenazine,

olanzapine, risperidone, thioridazine, and quetiapine, which

were obtained using the same acute administration

procedure as in the present studies, are also listed in Table

1 for comparison (Betz et al., in press; Salamone et al.,

1998; Trevitt et al., 1997, 1999).
Table 1

ED50 values (mg/kg) for the behavioral effects of acute typical and atypical

antipsychotic drugs

Compound ED50 (mg/kg)

TJM LP TJM/LP ratio

Haloperidol N1.0 0.088 N11.36

Pimozide N1.0 0.2721 N3.68

Fluphenazine 0.39 0.16 2.44

Thioridazine 9.90 6.58 1.50

Risperidone 0.061 0.063 0.97

Clozapine 3.32 5.43 0.61

Olanzapine 0.40 1.12 0.36

Quetiapine 7.223 21.4 0.34

Behavioral data for compounds other than pimozide are taken from Betz et

al. (in press), Salamone et al. (1998), and Trevitt et al. (1997, 1999) (TJM:

suppression of tacrine-induced tremulous jaw movements; LP: suppression

of lever pressing).
3.2. Experiment 3: effect of repeated pimozide on the

induction of TJMs

As depicted in Fig. 3, repeated administration of

pimozide led to a significant induction of jaw movement

activity for all three test days (i.e., day 1, day 7, and day 13).

A one-way ANOVA on the data from day 1 revealed a

significant effect of dose F(3, 36)=5.986, pb0.005 with the

group that received the highest dose displaying a signifi-

cantly larger number of TJMs than control ( pb0.005). For

the day 7 test, there was also a significant effect of dose F(3,

36)=7.346, pb0.005, and the groups that received 1.0 mg/kg

and 0.5 mg/kg doses displayed significantly larger numbers

of jaw movements than the vehicle group ( pb0.001 and

pb0.05, respectively). On day 13, there was again a

significant effect of dose F(3, 36)=6.299, pb0.005, and

the group that received 1.0 mg/kg significantly differed

from the vehicle control ( pb0.001).

3.3. Experiment 4: videotape analysis of local frequency of

pimozide-induced TJMs

Fig. 4 displays the results of the freeze-frame analyses of

videotaped samples of pimozide-induced jaw movement

activity. A total of 64 jaw movements within bursts were

analyzed. Data are shown as the number of inter-movement

intervals within each time category. To interpret these data

in terms of frequencies (i.e., jaw movements per second),

frequencies were calculated as the reciprocal of the inter-

movement interval (e.g., 5/30 s corresponds to 6 Hz, 6/30 s

to 5 Hz, etc.). As shown in Fig. 4, the vast majority (87.5%)

of the jaw movement activity within bursts took place in the
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Fig. 3. The effects of repeated administration of pimozide on the induction

of tremulous jaw movements are shown. Mean (FS.E.M.) number of

tremulous jaw movements (per 5 min) produced by each dose of pimozide

(or vehicle) on days 1, 7, and 13 of drug treatment are depicted. There were

significant main effects of dose and day (* differed from vehicle: pb0.05).
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frequency range. Peak frequency was in the 5–6 Hz frequency range (i.e., 5/30–6/30 s inter-movement times).
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3.0–7.5 Hz frequency range, with a marked peak in the 5–6

Hz range.
4. Discussion

It was demonstrated in experiment 1 that acute

administration of pimozide failed to suppress tacrine-

induced TJMs within the dose range that was used

(0.0625–1.0 mg/kg). This finding is consistent with

Stewart et al. (1988), who showed that pimozide (1.0

mg/kg subcutaneous) failed to suppress the jaw movements

induced by the muscarinic agonist pilocarpine (4.0 mg/kg

IP). The present results are also in line with the profile of

another typical antipsychotic drug, haloperidol, which was

shown to have no significant effect on tacrine-induced

TJMs in doses up to 1.0 mg/kg when administered acutely

(Trevitt et al., 1997) or subchronically for 14 days (Trevitt

et al., 1998). The results of experiment 2 showed that

acute administration of pimozide resulted in a significant

dose-dependent reduction in the number of FR5 lever

presses, with an estimated ED50 value of 0.2721 mg/kg.

Past research has indicated that the ratio of the ED50 for

suppression of tacrine-induced TJMs relative to the ED50

for suppression of lever pressing can be used as an index

of liability of an antipsychotic drug for inducing motor

side effects (Betz et al., in press; Salamone et al., 1998;

Trevitt et al., 1997, 1998, 1999). The results of experi-

ments 1 and 2 indicate that the ratio of ED50 values for
pimozide had a value greater than 3.68 (see Table 1).

Previous work from our laboratory using the same acute

administration procedure has shown that the typical

antipsychotic drug haloperidol did not suppress tacrine-

induced jaw movements even at doses up to 11 times the

ED50 for suppression of lever pressing. In contrast,

atypical antipsychotic drugs such as clozapine, olanzapine,

and quetiapine all suppressed tacrine-induced TJMs and

exhibited ED50 ratio values smaller than 1, as also shown

in Table 1 (Betz et al., in press; Trevitt et al., 1997, 1999).

The rank order of the ED50 ratios shown in Table 1

appears to correspond well with the clinical data on the

rank order of motor side effect liability for these

antipsychotic compounds. The typical antipsychotics pimo-

zide and haloperidol have been shown to have high

liability for production of motor side effects, while the

atypical antipsychotics clozapine, quetiapine and olanza-

pine are less likely to produce motor side effects (Claveria

et al., 1975; Chouinard and Annable, 1982; Bezchlibnyk-

Butler and Remington, 1994; Casey, 1997; Sultana and

McMonagle, 2000; Tarsy et al., 2002). Thus, the results of

experiments 1 and 2 demonstrate that the profile of

behavioral effects of pimozide on tacrine-induced TJMs

and lever pressing is similar to that of haloperidol, while it

is substantially different from those of the atypical

antipsychotics clozapine, olanzapine, and quetiapine. The

present results also support the hypothesis that the ED50

ratio can be used as an index of motor side effect liability

for various antipsychotic compounds.
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It was demonstrated in experiment 3 that repeated

administration of pimozide induced significant jaw move-

ment activity in a dose-related manner on days 1, 7, and

13. Even after the first administration, 1.0 mg/kg pimozide

induced significant jaw movement activity, and the effects

became more pronounced on day 7, with 0.5 and 1.0 mg/

kg producing significantly more jaw movements than

vehicle. On all days, the highest dose (1.0 mg/kg) of

pimozide induced significantly larger numbers of jaw

movements than the vehicle control. These data are in

line with previous research showing that TJMs can be

induced by both acute and subchronic (1–4 weeks)

administration haloperidol (Correa et al., 2004; Diana et

al., 1992; Egan et al., 1996b; Rupniak et al., 1983, 1985,

1986; Steinpreis and Salamone, 1993; Steinpreis et al.,

1993, 1996, 1997, 1998; Trevitt et al., 1998; Wisniecki et

al., 2003). The level of TJM activity induced by pimozide

in the present study was very robust for a DA antagonist

and was, if anything, slightly higher than the 22–28 jaw

movements per 5 min that typically are induced by

haloperidol in our laboratory (Trevitt et al., 1998; Correa

et al., 2004; Wisniecki et al., 2003). In addition to

pimozide and haloperidol, the selective D2 antagonist

raclopride also has been shown to induce TJMs after

repeated subchronic administration (Steinpreis et al.,

1996). In contrast, several studies that have examined the

effects of atypical antipsychotics have found little or no

jaw movement activity in response to injections of

clozapine, olanzapine, and quetiapine (Betz et al., in press;

Gunne et al., 1986; Johansson et al., 1986; Steinpreis et

al., 1997; Trevitt et al., 1997, 1999; Marchese et al., 2002).

These data, together with the results of experiment 3,

indicate that acute or subchronic administration of typical

antipsychotics can reliably induce TJMs in rats.

Although previous studies have reported induction of jaw

movements after acute or subchronic administration of

haloperidol, there are other studies in which jaw movement

activity was observed after chronic (6–12 months) treatment

with haloperidol (e.g., Egan et al., 1996b; Waddington,

1990; Waddington and Molloy, 1987). Consequently, it has

been a matter of controversy whether neuroleptic-induced

jaw movements are a model of early-onset motor effects

such as parkinsonian tremor (Rupniak et al., 1985, 1986;

Salamone et al., 1998) or whether they are a model of late-

onset tardive dyskinesia (Ellison and See, 1989; See and

Ellison, 1990a). This issue has been complicated by the fact

that various factors, such as method of assessment, dose,

and route and schedule of drug administration, appear to

influence types of jaw movement activity induced by

haloperidol (Egan et al., 1996a,b; See and Ellison, 1990b;

Turrone et al., 2002). Route and schedule of administration

are of relevance to the validity of the jaw movement model,

given that most patients with schizophrenia take their

medication daily via the oral route. In many studies using

haloperidol decanoate injections, jaw movements were

observed only after long-term treatment with the drug
(e.g., Egan et al., 1995; Gunne et al., 1982; Hyde et al.,

1995; Mithani et al., 1987; Stoessl et al., 1989), while

haloperidol appears to induce jaw movements very rapidly

when administered orally (e.g., Glenthoj and Hemmingsen,

1989; Rupniak et al., 1983, 1985) or via IP injection (e.g.,

Glassman and Glassman, 1980; Rupniak et al., 1986;

Steinpreis et al., 1993, 1997, 1998; Steinpreis and Sala-

mone, 1993; Trevitt et al., 1998; Wisniecki et al., 2003).

Moreover, several studies have shown differential effects of

continuous vs. intermittent treatment with haloperidol on

jaw movement activity, although the data from these studies

are somewhat conflicting, possibly due to methodological

differences (Glenthoj, 1993; Glenthoj and Hemmingsen,

1989; Glenthoj et al., 1990; Sant and Ellison, 1984; See and

Ellison, 1990b; Turrone et al., 2003; see Turrone et al., 2002

for review). Despite these complications, however, some

evidence suggests that early-onset and late-onset jaw

movements may have distinct pharmacological profiles

and neurochemical substrates (Egan et al., 1996b). While

tardive jaw movements are suppressed with increased doses

of haloperidol, early-onset jaw movements are not (Egan et

al., 1996b). In addition, anticholinergic drugs such as

scopolamine and atropine have been shown to attenuate

early-onset TJMs (Rupniak et al., 1985; Steinpreis et al.,

1993), but a few studies have indicated that late-onset jaw

movements are not suppressed by scopolamine (Glenthoj,

1993; Sakai et al., 2001). Recent data from our laboratory

indicate that the jaw movements induced by subchronic

administration of pimozide are suppressed by the muscarinic

antagonist tropicamide (Betz et al., 2004). Given that early-

onset and late-onset jaw movements may be pharmacolog-

ically and neurochemically distinct, it is unlikely that early-

onset TJMs, such as those induced by pimozide in the

present studies, are closely related to tardive dyskinesia for

several reasons. First, one of the essential features of tardive

dyskinesia is its delayed onset by months to years after the

initial neuroleptic treatment (APA Task Force, 1992;

Gerlach and Casey, 1988), but early-onset jaw movements

are observed within minutes to hours of the initial drug

treatment. This time course is very brief even if the

relatively short lifespan of the rat is taken into consideration.

In the present studies, 1.0 mg/kg of pimozide induced

significant jaw movement activity even on day 1, only 4 h

after the first drug administration. Secondly, as mentioned

above, early-onset TJMs induced by haloperidol are sup-

pressed by antiparkinsonian anticholinergic drugs (Rupniak

et al., 1985; Steinpreis et al., 1993). In contrast, tardive

dyskinesia is actually exacerbated by anticholinergic drugs

and can even be ameliorated by cholinomimetics (Burnett et

al., 1980; Fahn et al., 1974). Thirdly, TJMs induced by DA

depletion or cholinomimetics display the peak frequency

range of 3–7 Hz (Cousins and Salamone, 1998; Finn et al.,

1997; Mayorga et al., 1997; Salamone and Baskin, 1996),

while tardive dyskinesia usually occurs in the frequency

range of 1–2 Hz (Alpert et al., 1976; Wirshing et al., 1989,

1991). In the present study, we demonstrated that pimozide-
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induced jaw movements also tend to occur in the 3–7 Hz

frequency range, with the peak frequency in the vicinity of

5–6 Hz. Taken together, these observations support the use

of TJMs induced by acute or subchronic IP administration

of neuroleptics as a model of early-onset motor side effects

such as drug-induced parkinsonism.

The neurochemical mechanisms that underlie the

distinction between typical and atypical antipsychotics

remain uncertain. It has been suggested that the D4

antagonist effects of clozapine and other atypical anti-

psychotics are related to the unique clinical characteristics

of this class of compounds (Seeman, 1992; Seeman et al.,

1997). More recently, Kapur and Seeman (2001) proposed

that variations in the rate of dissociation from the DA D2

receptor across different drugs may be a useful marker for

differentiating typical from atypical antipsychotics.

Wadenberg et al. (2001) reported that in vivo D2 receptor

occupancy is highly correlated with potency for produc-

ing catalepsy and suppressing avoidance responding,

which are two behavioral markers of motor side effect

liability. It also is possible that actions on other neuro-

transmitters contribute to the motor characteristics of

typical and atypical antipsychotics. Clozapine and olan-

zapine have been shown to bind to muscarinic acetylcho-

line receptors (Miller and Hiley, 1974; Richelson and

Souder, 2000; Schotte et al., 1996; Snyder et al., 1974).

This observation is relevant to studies of TJMs because

cholinomimetic-induced TJMs can be blocked muscarinic

antagonists such as scopolamine, atropine, benztropine,

methoctramine, telenzepine or pirenzepine, and reduced

by knockout of M4 muscarinic receptors (Cousins et al.,

1997; Mayorga et al., 1997, 1999; Rupniak et al., 1983;

Salamone et al., 2001). The ability of atypical antipsy-

chotics to bind to 5-HT receptors also has been suggested

to be related to the clinical characteristics of these drugs

(e.g., Meltzer, 1989, 2003). Roth et al. (1995) hypothe-

sized that the ratio of 5-HT2A/D2 binding is useful for

distinguishing between typical and atypical antipsychotics.

Several studies of TJM activity support the hypothesis

that cholinergic and serotonergic systems interact in the

regulation of motor function (Betz et al., in press; Carlson

et al., 2003a,b; Stewart et al., 1987, 1988; Trevitt et al.,

1997). Additional research will be necessary to determine

if D2 occupancy, actions on other receptors, or a

combination of these effects provides the neurochemical

explanation for the distinction between typical and

atypical antipsychotics.

The present results, together with those of Trevitt et al.

(1997, 1998), have demonstrated that pimozide and

haloperidol have similar profiles in terms of their behavioral

effects. Both pimozide and haloperidol are DA D2 family

antagonists (Freedman et al., 1994). Animal studies have

also shown that both haloperidol and pimozide reduce

locomotor activity and produce catalepsy (Correa et al.,

2004; Drinkenburg et al., 1999; Ezrin-Waters and Seeman,

1977; Fujiwara, 1992; Hoffman and Donovan, 1995;
Karolewicz et al., 1996; Sousa et al., 2001; Spivak and

Amit, 1986; Wadenberg et al., 2001). Both haloperidol

(Drinkenburg et al., 1999; Salamone et al., 1991, 1996;

Sanger and Perrault, 1995; Trevitt et al., 1997, 1998) and

pimozide (Beninger et al., 1987; Fowler et al., 1986; Porter

and Villanueva, 1988; Wiley et al., 1994) have been shown

to suppress operant lever pressing. Human clinical studies

have shown that both drugs are effective in treating

symptoms of schizophrenia (Angst et al., 1989; Chouinard

and Annable, 1982; Feinberg et al., 1988; Joy et al., 2001;

Sultana and McMonagle, 2000; Tueth and Cheong, 1993;

van Kammen et al., 1987). Both haloperidol (Carlson et al.,

2003a,b; Moleman et al., 1982; Tran et al., 1997; Yen et al.,

2004) and pimozide (Chouinard and Annable, 1982;

Claveria et al., 1975; Sultana and McMonagle, 2000) have

a high liability for producing motor side effects in human

patients. Moreover, pimozide has been reported to be more

likely to produce parkinsonian tremor compared to other

typical agents (Sultana and McMonagle, 2000). This clinical

report is consistent with the present finding that pimozide

induces a robust TJM response in rats. These observations

suggest that assessment of TJM activity may be useful for

characterizing novel compounds in terms of their potential

typical or atypical antipsychotic profile. Additional research

with pimozide may advance our understanding of how

early-onset motor effects such as tremor are generated by

typical antipsychotics, and may help to elucidate the basal

ganglia mechanisms involved in the induction of parkinso-

nian symptoms.
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